
DOI 10.1140/epja/i2002-10027-7

Eur. Phys. J. A 14, 451–457 (2002) THE EUROPEAN
PHYSICAL JOURNAL A
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Abstract. In this communication we analyze the behavior of excited drops contained in spherical volumes.
We study different properties of the dynamical systems, i.e. the maximum Lyapunov exponent MLE, the
asymptotic distance in momentum space d∞ and the normalized variance of the maximum fragment. It is
shown that the constrained system behaves as undergoing a first-order phase transition at low densities
while as a second-order one at high densities. The transition from liquid-like to vapor-like behavior is
signaled both by the caloric curves, the thermal response functions and the MLE. The relationship between
the MLE, d∞, and the caloric curve is explored.

PACS. 24.60.Lz Chaos in nuclear systems – 24.60.-k Statistical theory and fluctuations

1 Introduction

Since the advent of accelerators powerful enough to ex-
plore the behavior of nuclear systems at intermediate en-
ergies, a new field of research has been opened, the ther-
modynamics of small systems. This problem has emerged
since the first suggestion that a highly excited nuclear
system might be undergoing a second-order phase transi-
tion. Such a hypothesis was brought up by the pioneering
work of the Purdue group in which a power law was fit to
the mass spectra in collisions of highly energetic protons
against heavy nuclei. Since then many experiments have
been performed in this energy range (for a recent review
see [1]). In order to gain understanding of the physical phe-
nomena involved in such a process different models have
been devised. These models can be roughly classified into
two main groups, the statistical ones and the dynamical
ones. In the first case it is assumed that the highly excited
nuclear system resulting from the collision of two heavy
ions is able to equilibrate in a fixed volume (usually re-
ferred to as the freeze-out volume) and then fragments.
This fragmentation process is entirely driven by the avail-
able phase space. This model has been quite successful in
describing some aspects of the fragmentation phenomena.
In what is relevant for our present analysis we recall that
the caloric curve, the functional relationship between the
energy and the temperature of the system, predicted in
this approach is of the “rise-plateau-rise” type and con-
sequently displays a vapor branch. The second approach,
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the dynamical one, assumes that the system is properly
described by a given Hamiltonian and puts no constrain
in the evolution of the excited system. In this case no
equilibration has been found. It has been shown [2] that
the resulting caloric curve, which in this case is defined as
the functional relationship between the temperature and
the energy of the system at fragmentation time, is of the
“rise-plateau” type, and no vapor branch is present.

These two views of the process of fragmentation give
interesting insight on the properties of a fragmenting sys-
tem, but differ in the relevant issue of the degree of equili-
bration of the system. It is then of primary importance to
have a clear understanding of the thermodynamical and
dynamical properties of finite systems enclosed in con-
straining volumes, thus having the possibility of reaching
equilibrium. Some studies have been performed in this di-
rection. For example in [3] the behavior of lattice gases
constrained in fluctuating volumes has been analyzed.
Moreover in [4] a rather extensive analysis of this kind of
systems was performed. In [5] a phase diagram was built.

In this paper we focus on the analysis of drops formed
by 147 Lennard-Jones (L.J.) particles enclosed in differ-
ent volumes performing a study in terms of the amount of
energy added to the system and its density. We pay spe-
cial attention to the dynamical characterization of such
a system through the analysis of two magnitudes. One
is the maximum Lyapunov exponent (MLE), which mea-
sures the rate of exponential divergence of initially close
trajectories in phase space, and the other is the asymp-
totic distance between trajectories (d∞).
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The main reason for choosing this particular system
is that in a series of previous works we have performed a
detailed, though still incomplete, study of its properties
when no constrain is imposed [2,6,7]. Moreover, we have
recently given a first step towards the characterization of
the behavior of equilibrated systems [8].The sizes of the
constrained volumes have been chosen such that we go
from a dilute case to a very dense one. In order to study
such a system we performed extensive numerical simula-
tions of the molecular dynamics type.

This paper is structured in the following way: In sect. 2
we briefly describe the model used in our numerical sim-
ulations.

In sect. 3 we show the calculated caloric curves for our
test system composed of 147 Lennard-Jones particles as a
function of its energy for different values of the radius of
the constraining volume.

In sect. 4 we describe the methodology we use to cal-
culate the MLE and the d∞.

In sect. 5 we show our results. Finally, conclusions are
drawn.

2 The model

Following a series of previous works in this field [2,6,8–10]
we will rely heavily on numerical simulations of classical
systems interacting via a Lennard-Jones potential, which
reads

V (r) =


4ε

[(
σ
r

)12 − (
σ
r

)6 −
(

σ
rc

)12

+
(

σ
rc

)6
]

r < rc

0 r ≥ rc

.

(1)
We fix the cut-off radius as rc = 3σ. Energy and dis-

tance are measured in units of the potential well (ε) and
the distance at which the potential changes sign (σ), re-
spectively. The unit of time used is t0 =

√
σ2m/48ε. In our

numerical experiments initial conditions were constructed
using the already-presented [2] method of cutting spher-
ical drops composed of 147 particles out of equilibrated,
periodic, 512 particles per cell L.J. system. We choose this
kind of initialization because we consider that the result-
ing correlations present in the system at initial time are
the least biased ones. It is worth mentioning at this point
that the general features of the fragmentation process do
not depend on the initial state as has been shown in [9],
where the fragmentation of bidimensional drops via the
collision with fast aggregates of three particles was stud-
ied. A broad energy range was considered such that the
asymptotic mass spectra of the fragmented drops display
from an “U-shaped” pattern to an exponentially decaying
one. Somewhere in-between this two extremes a power-
law–like spectra can be found.

Although our system is purely classical and no direct
connection with nuclear systems can be established, one
has to take into account that the main features of the nu-
clear interaction (strongly repulsive at very short range
and attractive at a longer range) are present in this inter-
action potential. Then it is quite plausible that the main

features of L.J. systems should appear in nuclear systems.
In this respect, and of great importance for this work, both
systems present an equation of state of the same type.

Because we will be mainly interested in the behavior of
constrained systems we have to define the walls that will
contain the excited drop. We have defined the walls of
our container using a very strongly short-ranged repulsive
potential (cut and shifted) defined as

Vw =
{

exp (1/(r−R))−exp (1/(rc−R))⇔rc ≤ r ≤ R
0 ⇔r < rc

,

(2)
where rc defines the skin of the constraining volume.

3 Caloric curves at constant density of
constrained systems

The caloric curve (CC) is one of the main observables
in the analysis of multifragmentation. In fact there is no
agreement in the nuclear-physics community about its
properties. The analysis of experimental data has given
different results. Different thermometers have been used
and the resulting caloric curves are of two types. On the
one hand, we have those that present a “rise-plateau-rise”
shape which resemble the standard view, inherited from
classical thermodynamics, and have induced to recognize
a transition from a liquid-like to a vapor-like state. This
same result has been obtained when one adheres to sta-
tistical models to analyze the phenomena. Because sta-
tistical models impose equilibration in a given “freeze-
out” volume it is natural to get this kind of behavior. On
the other hand, classical molecular dynamics calculations
indicate [2,9] that when the process of fragmentation is
properly analyzed in phase space [11] the resulting caloric
curve, in this case defined as the temperature of the sys-
tem at fragmentation time, is of the type “rise-plateau”
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Fig. 1. In this figure we show the caloric curve for 147 Lennard-
Jones particles for different sizes of the constraining volumes.
Circles denote the CC corresponding to a constraining volume
of radius R = 15σ, squares for R = 8σ, diamonds for R = 6σ
and finally triangles denote the CC for R = 4σ.
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Fig. 2. In this figure we show the size of the biggest fragment, normalized to the total size of the system, as a function of the
energy deposited in the system and for the four volumes considered in this work. Panel a) corresponds to a volume of radius
R = 15σ, while b) corresponds to R = 8σ, c) R = 6σ and d) R = 4σ. In each panel two curves are drawn, full lines correspond to
fragments recognized by the ECRA formalism, while dashed lines correspond to MST analysis. It can be immediately seen that
in the dilute case (R = 15σ) both descriptions give essentially the same result. On the other hand, as the system becomes dense
the MST comprises most of the mass of the system. This is the reason why as the density is increased the system is not able
to separate in different coexisting phases in configurational space. On the other hand, in phase space the system is fragmented
irrespective of the value of the density.

and no vapor branch is present. This behavior has been
traced to the presence of a collective motion, expansion,
that behaves as a “heat sink”. Recent experimental results
seem to confirm this view [12].

In a recent work we have shown that the effect of con-
fining the excited drop in a given volume, i.e. allowing the
system to reach equilibrium, is the appearance of the va-
por branch. In this work we will extend those calculations
exploring a broader range of densities and incorporating
useful dynamical quantities.

From the analysis of molecular dynamics calculations
of constrained systems [8] we have extracted the caloric
curves that are displayed in fig. 1. It is immediate that a
very interesting phenomenon takes place. The same sys-
tem at the same temperature will change its behavior as a
function of the density. In this figure it can be clearly seen
that for the less dense case a clear loop in the caloric curve
is obtained. But as the density is increased this loop dis-
appears and is replaced by a change in the slope. Moreover
at even higher densities the caloric curve looks essentially
straight and all signals of a change in behavior are erased.

The origin of the relationship between the caloric curve
and the density can be understood quite easily by an-
alyzing the biggest cluster formed in the system. For
this purpose we use two algorithms already presented in
the literature [13] (see appendix for details). Very briefly
we can say that the, improperly called, minimum span-
ning tree (MST) algorithm looks for clusters of interact-
ing particles in configuration space, and completely dis-
regards the relative momentum (clusters calculated with
this method will be referred to as configurational frag-
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Fig. 3. In this figure we display the resulting value of the en-
tropy as a function of the energy for a constraining volume
of radius R = 15σ. The curve displays a convex intruder be-
tween E1 and E2 which has been associated with a first-order
phase transition, ∆S being the entropy lost in the formation of
surfaces. In order to visualize the convex intruder a lineal func-
tion a+ b E has been substracted to the entropy. Here a = 4.3,
b = 1.4.

ments). On the other hand, we use the early cluster recog-
nition algorithm which seeks for the most bound partition
in phase space (clusters calculated with this algorithm will
be referred to as ECRA clusters). This algorithm has al-
lowed us to find that the fragmentation in an expanding
system takes place very early in the evolution. In fig. 2 we
show the obtained biggest fragment from the analysis of
configurations according to both techniques in constrained
systems (see caption for details).
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Fig. 4. Here we show the CC (upper panels) and the associated TRF (lower panels) for two values of the volume. The left-hand
side corresponds to R = 15σ (dilute case) and the right-hand side to R = 8σ (transition to dense state). It can be seen that for
the dilute case two poles are present which limit the region of negative TRF. On the other hand, at R = 8σ the TRF is always
positive and displays a maximum.

The emerging picture is the following: In the case that
the fragment recognition algorithm is the MST, we see
that for low densities there is enough room in the con-
straining volume to allow the formation of drops, i.e. at
low densities the biggest configurational fragment is a de-
creasing function of the energy. But as we increase the den-
sity the biggest configurational fragment comprises most
of the mass in the system. On the other hand, when we
calculate the ECRA clusters, the analysis shows that for
all the densities considered the ECRA biggest fragment is
a decreasing function of the energy.

Once the caloric curve is known it is easy to calculate
the entropy S as a function of the energy and the density:

S =
∫

dE

T (E)
. (3)

In fig. 3 we show S for a dilute system (see caption for
details). It is immediate that a convex intruder appears
which has been proposed to be a signature of a first-order
phase transition in non-extensive systems [4] (i.e. the for-
mation of surfaces turns the entropy into a non-extensive
function in small systems).

The next step is to calculate the behavior of the ther-
mal response function (TRF) of such a system:

TRF =
(

dE

dT

)
. (4)

In fig. 4 the results of such calculation are displayed.
We can see that for low densities, as a consequence of
the presence of a loop, two poles and negative values are
attained by this quantity. This has been signaled as an
evidence for a first-order phase transition. It is due to the
fact that surfaces appear in the system. As the density

is increased above a certain threshold, the caloric curve
only displays a change in the slope and the two poles
merge in a single finite maximum (finite-size effect). We
can then state that the system goes from a first-order–
like to a second-order–like behavior as a function of the
available space in configuration space.

4 Maximum Lyapunov exponent and
asymptotic distance in momentum space

We now proceed with our analysis and focus on the dy-
namical aspects of the constrained system and its rela-
tionship with the above-described thermodynamical prop-
erties.

One of the main tools to study a chaotic system is
the maximum Lyapunov exponent [14], which is a mea-
sure of the sensitivity of the system to initial conditions
and also gives an idea of the velocity at which the system
explores the available phase space. Given two very close
initial conditions in phase space, the MLE, λ̂, is given by
the following relation:

λ = lim
t→∞ lim

d(0)→0

[
1
t

ln
d(t)
d(0)

]
, (5)

where d(t) is the distance in phase space between two
trajectories (1 and 2) which initially differs each other in
a very small quantity d(0).

In order to calculate this quantity we must define a
metric

d12(t)=
√ ∑

i=1,N

[
a (r1 (t)−r2 (t))2+b (p1 (t)−p2 (t))2

]
.

(6)
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Fig. 5. In this figure we plot the MLE as a function of the
energy deposited in the system for the four values of the con-
straining volume considered in this work. Symbols have the
same meaning as in fig. 1). It can be seen that the MLE clearly
signals the transition from a liquid-like regime to a vapor-like
regime (according to the ECRA analysis).

In this equation a and b are constants which take care
of the units. It has been shown that the MLEs are inde-
pendent of the metric [15]. In our case we have found it
useful to take a = 0 and b = 1/m. With m as the mass
of the particles that according to the units defined in the
model gives b = 1.

If we calculate the distance in momentum space be-
tween nearby trajectories we find an exponential growth,
followed by a saturation. This saturation is due to the fact
that the available phase space is limited (the energy is a
constant of motion). In order to handle this, we calcu-
late the MLE following a method given in ref. [16]. In this
method, after a time step τ � τsat, the distance d(τ) = d1

is rescaled to d0 in the maximum growing direction and
the quantity ln[d1/d0] is saved. Repeating the procedure
at every time step τ , the logarithmic increments ln

[
di

di−1

]
are collected. The MLE is defined as

λ = lim
n→∞

1
nτ

n∑
i=1

ln
∣∣∣∣ di

di−1

∣∣∣∣ . (7)

The ratio di

di−1
is a measure of the exponential diver-

gence between two initially nearby orbits along the maxi-
mum growth direction at time iτ .

Another quantity that has been recently proposed is
the asymptotic distance in phase space d∞, [17,18] which
measures the maximum distance in momentum space
when two initially close trajectories are followed in time.
In order to calculate d∞ we use the same metric but no
rescaling, as is used in the method explained above. In this
case the molecular dynamics evolutions needed to calcu-
late such a quantity are much shorter due to the fact that
d∞ reaches a plateau rather fast.

5 Results

In what follows we show the results of our calculations.
In first place we show the MLE for constrained sys-

tems. In fig. 5 we show this quantity for four densities
(the same densities at which the caloric curves are shown
in fig. 1). The following features are relevant: For energies
below zero (E < 0), the MLE is an increasing function
of the energy, following the behavior of the caloric curve.
As energy is increased the behavior of the MLEs changes
abruptly. In the range 0 � E � 1 we find that, for the low
density case the MLE displays a very pronounced loop
which is in correspondence with the loop displayed by the
caloric curve. On the other hand, for the next two densities
a clear loop is present in the MLE while the correspond-
ing caloric curves only show a change in the slope in this
region. Finally for the highest density considered in this
work the caloric curve is featureless in this region while
the MLE shows a valley.

In order to gain insight into the reasons of this behavior
we have found it useful to study the following quantities.
In first place we look at the mass distributions. When deal-
ing with configurational fragments spectra we see that two
very different behaviors appear. For R � 15σ fragments
(drops) of different sizes appear in the volume as energy
is added to the system. The mass spectra go from an ex-
treme U shape in the liquid-like region to an exponentially
decaying one in the vapor-like region. It is clear that as
the density is raised there will be less and less room for
the system to form non-interacting drops. It is then seen
that, for R � 8σ, only one configurational fragment ap-
pears in the system. At this point the caloric curve also
shows a change in behavior going from a curve that dis-
plays a loop to one that only shows a change in slope. On
the other hand, when the same configurations are analyzed
using the early cluster recognition algorithm, a different
picture appears: Regardless the size of the constraining
walls, the system behaves as undergoing a phase transi-
tion, i.e. drops are formed in phase space.

We have also calculated the normalized variance of the
size of the maximum fragment. It has been shown [19]
that this magnitude will display a maximum, for a system
whose mass spectra is well described by a scaling law of
the type ns ∝ s−τf (z) at f(z) = 1, at the point in which
the mass distribution is a power law (i.e. a distribution
function free of scales). The normalized variance of the
size of the maximum fragment (NVM) is defined as

NVM =
σ2 (BF)
〈BF〉 , (8)

where BF stands for the normalized mass of the biggest
fragment and the brackets indicate an ensemble averaging.
In fig. 6 we show the values of this quantity for the four
considered densities. It can be readily seen that this quan-
tity displays a maximum in the energy range in which the
MLE displays a loop (or a valley for the highest density
considered).

Now we consider the behavior of the other relevant
magnitude presented in this work, i.e. d∞. In order to
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Fig. 6. Values of the NVM as a function of the energy for the volumes considered in this work; a) corresponds to R = 15σ, b)
to R = 8σ, c) to R = 6σ, d) to R = 4σ. Notice that it displays a clear maximum in all cases which correspond to the region in
which an anomaly is detected in the behavior of the MLE.
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Fig. 7. d∞ scaled with the square root of the kinetic energy
for a volume of radius R = 8σ. Different curves correspond to
different energies in the range −3.4 ≤ E ≤ 4.0 Notice that
after a short time all the curves collapse into a single one.

explore its scaling properties we define dn
∞ which stands

for the normalized asymptotic distance

dn
∞(t) =




∑N
i=1

[
(p1(t) − p2(t))

2
]

i
1
2

∑N
i=1 [p1(t)]

2
i




1
2

. (9)

In other words

dn
∞(t) =

d(t)√
K

, (10)

i.e., the distance in momentum space normalized to the
square root of the kinetic energy.

In fig. 7 we show the result of such an analysis for
R = 8σ and in fig. 8 the same but at R = 15σ . In both
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Fig. 8. Same as fig. 7 but for a volume of radius R = 15σ.
Notice that, as before, after a still short time, but larger than
in the case of R = 8σ, all the curves collapse into a single one.

cases it is seen that the asymptotic distance in momentum
space scales as the square root of the kinetic energy (and
then as the square root of the temperature) of the system
as it was conjectured in [17].

Finally in fig. 9 we show the d∞ as a function of the
energy for two densities. It can be seen that its behav-
ior clearly resembles the corresponding one for the caloric
curve, thus this quantity could be used instead of T if the
latter is not reliably measurable.

6 Conclusions

The main results of our calculations can be summarized
in the following:



M. Ison et al.: Dynamical properties of constrained drops 457

-4 -2 0                       2 4
energy [ε]

0.2

0.3

0.4

0.5

0.6

d
∞ 

[√
ε]

Fig. 9. In this figure we show d∞ as a function of the energy
for volumes corresponding to R = 15σ (squares) and R =
8σ (circles). Upon comparison of these curves with the ones
corresponding to the CC (fig. 1) we can see that both are quite
similar.

a) The caloric curve is strongly dependent on the density
of our system. As the density is increased the behavior
of this function goes from displaying a loop (which we
refer to as first-order–like behavior) to only presenting
a change in the slope (in this case we talk about
a second-order–like behavior). In the first case, the
thermal response function displays two poles, which
converge into a single maximum as the density sur-
passes a given threshold (R ∼ 8.7σ ⇒ ρ ∼ 0.05σ−3).
Three regions can then be recognized, the liquid-like,
the transition region and the vapor-like region.

b) The MLE is quite sensitive to the transition from
liquid-like to vapor-like states of the finite constrained
system. In all cases, even when the caloric curve is
almost featureless a signal is detected in the MLE.
This signal has been found to be significant by
studying other quantities like the normalized variance
of the mass of the biggest fragment (NVM).

c) The d∞ has been shown to scale like
√

K (with K
as the kinetic energy) and then as the caloric curve,
giving useful insight into the amount of phase space
visited by the system.
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M. Ison is a fellow of UBA.

Appendix A.

In previous papers the main fragment recognition algo-
rithms currently in use have been fully analyzed [13]. The
simplest definition of cluster is basically: a group of parti-
cles that are close to each other and far away from the rest.
The fragment recognition method known as minimum
spanning tree (MST) is based on the last idea (I). In this

approach a cluster is defined in the following way: given a
set of particles i, j, k, ..., they belong to a cluster C if

∀ i ∈ C , ∃ j ∈ C / |ri − rj | ≤ Rcl , (A.1)

where ri and rj denote the positions of the particles and
Rcl is a parameter usually referred to as clusterization ra-
dius, and is usually related to the range of the interaction
potential. In our calculations we took Rcl = 3σ.

On the other hand, the early cluster formation model
(ECFM) [11], is based on the next definition: clusters are
those that define the most bound partition of the system,
i.e. the partition (defined by the set of clusters {Ci}) that
minimizes the sum of the energies of each fragment ac-
cording to

E{Ci} =
∑

i


 ∑

j∈Ci

Kcm
j +

∑
j,k∈Ci

Vj,k


 , (A.2)

where the first sum is over the clusters of the partition,
and Kcm

j is the kinetic energy of particle j measured in
the center-of-mass frame of the cluster which contains
the particle j. The algorithm (early cluster recognition
algorithm, ECRA) devised to achieve this goal is based
on an optimization procedure in the spirit of simulated
annealing [11].
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